IEEE International Symposium on Performance Analysis

of

Systems and Software. April, 2009. Boston,

SuiteSpecks and SuiteSpots: A Methodology for the Automatic Conversion of
Benchmarking Programs into Intrinsically Checkpointed Assembly Code

Jeff Ringenberg and Trevor Mudge
The University of Michigan
Electrical Engineering and Computer Science
ljringenb, tnm}(@eecs.umich.edu

ABSTRACT

This paper introduces a methodology to reduce the
overall simulation time of large benchmarking suites.
Previous work shows that it is possible to simulate only
small sections of a benchmark’s dynamic instruction
stream in detail without sacrificing accuracy in
simulation results with respect to overall behavior. As
benchmarking suites increase in size, many such
techniques still require a great deal of simulation time
to complete. The methods presented in this paper build
on this previous work by converting representative
sections of a benchmark’s execution into intrinsically
checkpointed assembly (ITCY) code that can serve as a
replacement for the original benchmark. In addition, a
methodology is proposed that creates new benchmark
binaries that no longer need input files or system calls
in order to execute properly. Simulations of the new
benchmarks are much faster, require less overhead,
and still properly represent the original benchmark’s
execution profile.

Results show that benchmarks created using these
techniques can be very portable and accurately predict
the performance of the original benchmark. An
average error rate of less than 5% is achieved when
compared to the original representative sections. In
addition, a speedup of approximately 60x per
benchmark is achieved over a standard set of
SimPoints when the new benchmarks are executed
serially and 1000x when executed in parallel. This
translates into a reduction in simulation time from
months to minutes and greatly decreases the amount of
time necessary to test a new design.

1. INTRODUCTION

The process of properly testing and rating a new
microprocessor design takes a great deal of time and effort.
Large datasets, multiple configurations, and highly complex
simulators all contribute to an ever increasing amount of time
needed to measure performance. Many techniques have
begun addressing this issue by tackling a variety of the factors
that contribute to this increase in simulation time.

This paper describes a technique that is targeted at
reducing the overall simulation time needed to test a new
design while still maintaining an acceptable level of accuracy
with respect to performance estimation. The technique first
analyzes a set of predetermined segments of a benchmark's

978-1-4244-4184-6/09/$25.00 ©2009 IEEE

Dataset Reduction

227

dynamic instruction stream to determine the checkpointing
information that is needed were each segment to execute
independently. This checkpointing information is then
combined with the assembly code of the original benchmark
to create an entirely new program written in assembly and
composed of a subset of the static instructions from the
benchmark along with any necessary checkpointing and
control code needed for proper execution. This code, referred
to as InTrinsically Checkpointed assemblY (ITCY) code, is
re-compiled and executes only the code necessary to simulate
a specific range of instructions from the original benchmark's
dynamic instruction stream.

The rest of the paper is organized as follows. Section 2
will discuss several previously proposed simulation time
reduction techniques. Section 3 will describe the ITCY code
generation technique. Section 4 will outline the experimental
framework and section 5 will provide results and analysis of
the technique. Section 6 will conclude the paper along with
providing some thoughts on future work.

2. PREVIOUS WORK

There are many different techniques, summarized in
Figure 1, that can be used to reduce the simulation time of a
new design while still maintaining an acceptable level of
accuracy. They can be broken down into three main
categories: benchmark suite reduction, statistical simulation,
and instruction sampling. The first category decreases
simulation time by reducing the size of the input data to the
benchmarks, by simulating a subset of the original
benchmarks, or by doing both. Since the benchmarks
subsequently do not execute as many instructions as was
originally intended, the overall execution time will be faster.
The second category takes each benchmark and runs a set of
profiling routines on it to extract its makeup and behavior.
Once this information is obtained, a new, smaller benchmark

Simulation Time Reduction Techniques

/\

Benchmark Suite Reduction Statistical Simulation

Benchmark Subsetting Trace-based Simulation Testcase Program Synthesis

Instruction Sampling

Fast-forwarding Checkpointing

Figure 1: Summary of Simulation Time Reduction
Techniques

Massachusetts.

trev
Typewritten Text
IEEE International Symposium on Performance Analysis of Systems and Software. April, 2009. Boston, Massachusetts.

binary or trace is created whose behavior is meant to mimic
that of the original benchmark. The third category involves
sampling intervals of instructions from the benchmark's
dynamic instruction stream and then re-executing the intervals
at a later time. The cumulative performance of these samples
is intended to represent the overall performance of the
benchmark if it were to be executed in its entirety.

A problem with instruction sampling, in particular, is that
once the sample intervals of the original benchmark have
been identified, they may start at any point in the benchmark's
dynamic instruction stream. Reaching these starting points
can be done in several different ways. The entire benchmark
can be functionally executed up until the starting point,
referred to as fast-forwarding, and then the detailed
simulation of the sample can begin. Unfortunately, this
method can take a long time to complete if the starting point
occurs late in the benchmark's execution. Alternatively, the
sample interval can use checkpointing to restore the state of
the system corresponding to the start of the interval. The data
used do to this, referred to as a checkpoint, can be used to
refresh the architectural state of the system such as memory
and registers, and also its microarchitectural state such as
caches and branch predictors. The procedure of refreshing
microarchitectural state is typically referred to as warmup.

2.1 Benchmark Suite Reduction

The techniques in this section reduce simulation time by
altering the composition of the original benchmark suite.
Even though great care goes into the creation of a
benchmarking suite, there can still be a large amount of
redundant behavior that is exhibited by its member programs
and input datasets. The techniques in this section identify this
behavior so that only those programs and input datasets that
are necessary to properly represent the benchmarking suite
can be simulated.

Dataset reduction reduces the amount of data that a
program must process and therefore its execution will finish
quicker than if the benchmark had massive amounts of data to
handle. This method is used to create the MinneSPEC [11]
workloads and reduces the size of the input datasets to the
SPEC CPU2000 benchmarks [10]. Once the workloads are
created, they can be used to quickly and repeatedly execute
the benchmarks, however they are often so reduced that they
no provide representative results.

In [24], several different approaches meant to reduce the
number of benchmarks that need to be run from a given
benchmarking suite are compared. These approaches
advocate executing a reduced number of program-input pairs
from the suite called a subset based upon the similarities
between the pairs. Each approach uses a different method to
choose a subset of the suite, however, the method detailed in
[16] proves to be the best with respect to accuracy versus cost.

2.2 Statistical Simulation

This section discusses techniques that convert a
benchmarking program into a trace or an entirely different

228

program whose execution profile is intended to match that of
the original benchmark. Two types of statistical simulation
are discussed. The first, trace-based simulation, generates a
trace of instructions from the initial profile which is run on a
specially instrumented simulator capable of interpreting the
trace. The second, testcase program synthesis, generates an
actual program binary from the initial profile that can be run
on a traditional execution-based simulator.

In [8], a method of trace-based simulation is proposed.
First, a trace of the program's execution is obtained from real
hardware. This initial trace is input into a set of three
profiling tools, two of which model microarchitecture-
dependent statistics (i.e. cache and branch performance) and
the third which models microarchitecture-independent
statistics. Once these statistics are gathered, a synthetic trace
is generated. Later work done in [7] and [9] expanded the
capabilities of the method proposed in [8] and reduced the
average performance prediction error.

As an alternate to creating a synthetic trace, statistical
simulation can be performed using a standalone program
whose creation and execution profile are also based on
statistical analysis. This method is referred to as testcase
program synthesis. In [3], the HLS methodology described in
[14] is modified and then used to generate a profile of the
benchmark. After the profile is generated, a synthetic
program, written in C, is created based on the profile. This
technique unfortunately suffered from an inability to properly
model branch prediction and cache performance and
subsequent work done in [5] and [4] addressed these issues.
A detailed analysis was done in [2] on the source of errors in
testcase synthesis. It was shown that, while errors do
contribute to a loss of accuracy, the effects are small with
respect to the performance of the original program. However,
because of these errors, testcase synthesis should not be used
as a replacement for detailed, application simulation.

2.3 Instruction Sampling

The methods in this section reduce simulation time by
using a technique called instruction sampling. These
techniques can achieve the highest level of accuracy with
respect to performance prediction. However, they oftentimes
result in a longer simulation times than benchmark suite
reduction and statistical simulation. The basic instruction
sampling methods select intervals of instructions from the
dynamic instruction stream and then re-execute those
intervals at a later time. Depending on the size and location
of the intervals, the reduction in simulation time can be quite
dramatic.

The Sampling Microarchitecture Simulation framework
(SMARTS) [23] is a simulation tool that uses statistical
sampling to identify intervals of equal length within a
benchmark's dynamic instruction stream. Each interval
consists of an initial warmup phase, a detailed simulation
phase, and a fast-forwarding phase. When the original
benchmark is re-executed, it will fast-forward a preset number
of instructions to the first interval and then begin the initial
warmup phase. The detailed and fast-forwarding phases then

follow until the next interval is reached. Once the simulation
completes, the results from the detailed phases can be used to
estimate the overall performance.

Another popular instruction sampling tool is SimPoint
[19]. Similar to SMARTS, it only executes a small amount of
the original benchmark in detail, reserving the rest for fast-
forwarding. Unlike SMARTS, however, SimPoint uses a
technique to group intervals of the dynamic instruction stream
into clusters based on their basic block profiles. Candidate
intervals are then chosen from each cluster to be executed in
detail. The overall performance of the benchmark is
calculated using the results of each interval along with their
frequencies in the original benchmark

2.4 Techniques for Checkpointing and Warmup

To enable a benchmark to execute an instruction interval in
the middle of its dynamic instruction stream without
executing all the instructions prior to the interval, checkpoint
data must be used to refresh the state of the system. At the
simplest level, the checkpoint must at least refresh the
architectural state such as the memory and the register file.
However, if the sampled interval is to be completely
simulated in detail on the microarchitectural level, there must
be more detailed information, referred to as warmup data,
contained in the checkpoint to refresh such components as the
caches and branch predictor.

One way to obtain checkpoint and warmup data is by
directly executing the benchmark on real hardware. This can
rapidly provide data, however, a system to directly execute
the benchmark may not always be readily available. In [15]
and [18], direct execution is used to obtain instructions from
within an instruction interval. In [15], the Pin [12] tool
produces a benchmark profile that is input into SimPoint to
identify representative instruction intervals. Once these
intervals are identified, they are compared against the original
benchmark using Pin and a set of PinPoints is generated. The
PinPoints can then either be used as an instruction trace of the
interval or to dictate to an execution-driven simulator when it
should switch between fast-forwarding and detailed execution
modes. In [18], a completely new program is generated.
When combined with a pre-loaded memory image, the
program executes a set of instructions that represent the
original interval of interest.

In [13], the Pin tool is again used to directly execute a
benchmark on native hardware. However, the importance of
Pin in this technique is that it is modified to capture system
effects. These effects are stored in a system effect log and are
later used during architecture simulations by having the
simulator process the log. This type of checkpointing is
different than previous methods since it removes the need for
a simulator to support system calls.

Work done in [20] directly addresses checkpointing and
warmup in SimPoint. It proposes two techniques, the fouched
memory image (TMI) and the memory hierarchy state
(MHS), to refresh the system state prior to the execution of
the simulation interval. The TMI creates a list of memory
addresses and data values that are used to refresh the

229

architectural state of the system and the MHS stores a cache
state that is collected during a simulation of the memory
hierarchy prior to the execution of the interval. Later, when
the interval is simulated in detail, the microarchitectural
information stored by the MHS is loaded and used to refresh
the state of the cache, or any cache with a smaller size or
associativity. Similar to the work done in [20], [21] and [22]
propose techniques that are targeted at the rapid
checkpointing and warmup of SMARTS. Again, state is only
stored for the instructions that will be executed in each
SMARTS interval, and unlike [20], caches are not the only
microarchitectural elements that are warmed up. The branch
predictor is also warmed by storing checkpoint data for a
variety of configurations. The combination of the checkpoint
and warmup data along with the interval is referred to as a
live-point.

In [17], we presented an additional technique for
generating simulator-derived checkpoint data called Intrinsic
Checkpointing through Binary Modification (ICBM). This
technique uses a method such as SimPoint to identify a set of
intervals that represent the benchmark and each interval is
then analyzed to create checkpoint data only for those
instructions that are in the interval. Next, the checkpoint data
is converted into a series of machine instructions and written
directly into the benchmark's original binary. The original
binary is also modified to begin its execution at the start of the
checkpointing instructions and then transfer control to the
interval once they have executed. The simulator ultimately
exits the benchmark when the interval has completed the
necessary instructions.

While the techniques presented in this paper are similar to
[17] in some aspects, the methods in this paper have
addressed several shortcomings that were discussed in [17].
First, ICBM code requires the simulator to count the number
of instructions in the modified binary during its execution and
exit when it has executed a predefined number of instructions.
Second, system calls must still be supported by the simulator
and cannot be removed from the modified binary. This
requires that input files still be made available to the modified
benchmark. Finally, ICBM code only works with single
simulation intervals and cannot combine multiple intervals
into a single, new benchmark.

3. INTRINSICALLY CHECKPOINTED ASSEMBLY
CODE

The methodology presented in this section is the focus of
this paper and consists of three distinct phases that transform a
large benchmarking binary into one or more intrinsically
checkpointed binaries. The first phase selects representative
intervals of the original benchmark's dynamic instruction
stream using a tool such as SimPoint or SMARTS. The
second phase converts these intervals into InTrinsically
Checkpointed assemblY (ITCY) code by running the original
benchmark through a modified functional simulator. Finally,
the third phase compiles the ITCY code into either a set of
SuiteSpecks, independent code segments that can be executed
in parallel, or a SuiteSpot, a grouping of ITCY code segments

Original

Benchmark Completo SuiteSpot
1 -
Gompilatio
- 0"‘ -

Interval ITCY _ SuiteSpeck
ITCY
Selection / ™ _Codegen _II

Figure 2: ITCY Code Generation Diagram

linked together by branches. Figure 2 represents these phases
pictorially.

3.1 Simulation Interval Selection

During this phase, the original benchmark is analyzed to
select regions of its dynamic instruction stream that can be
used for detailed analysis using a tool such as SimPoint or
SMARTS. As these tools have shown, only a small subset of
a program needs to be simulated in detail in order to obtain a
representative sample of the overall behavior of the
benchmark and the remainder of the program can quickly be
simulated on a functional level. However, this functional
simulation can still take many hours to complete.

3.2 ITCY Code Generation

The ITCY code generation phase takes the selected
dynamic instruction intervals and converts them into ITCY
code using an augmented functional simulator from the
SimpleScalar [1] toolset targeting the Alpha 21264 ISA [6].
The ITCY code consists of three main parts: intrinsic
checkpointing (IC) code meant to recreate the environment of
the original benchmark through checkpointing, the original
static assembly instructions from the interval, and special
control code that is needed to handle various situations
discussed below.

This conversion process must address several issues in
order for the new code to execute properly. First, it must
ensure that the initial state of the original interval when
executed in the new binary matches the state that it possessed
when it began its execution in the original benchmark.
Second, it must set up the new binary such that any memory
accesses it contains will reference valid locations in its
allocated memory space. Third, it must guarantee that the
new dynamic instruction stream runs in the same order as
when it was first executed. Fourth, it must recreate the static
instruction footprint in such a manner that the cache access
patterns of the new binary mimic those of the original binary.
Finally, the new code must exit after the correct number of
dynamic instructions from the original interval have occurred.
In addition to the five issues mentioned above, system calls
(syscalls) encountered inside each simulation interval will be
emulated using code similar to that used to checkpoint the
interval itself. Figure 3 gives a graphical overview of how the
various fast-forwarding, warmup, and detailed simulation
intervals are combined into either a SuiteSpot or a set of
SuiteSpecks.

Checkpointing Code: O)) . N

. Simulation Interval: ! |

Warmup Code: <> AN P

Program Program
Start o Y of - " End

=y [] =y
N W e GO

L]

T

Figure 3: ITCY Interval Selection and the Creation of
a SuiteSpot or SuiteSpecks

3.2.1 Initial State Intrinsic Checkpointing

In order for the new ITCY code to begin its execution
properly, its initial state must be restored to that which was
seen when it was first executed inside of the original
benchmark. The methods used to accomplish this are based
on the techniques outlined in [17] with several modifications
made to the way that memory is checkpointed. The ITCY
methods do not make use of multiple copies of memory, as
was seen in [17], and instead mark memory usage prior to the
interval's execution using flags. Any stores encountered prior
to the execution of the interval mark each byte of the memory
locations that they modify indicating that the locations have
changed. In addition, any memory locations changed due to
syscalls are similarly flagged. Then, whenever a load occurs
inside the interval, the simulator checks the flags on all the
bytes that will be read. If any of the bytes have been
modified, a temporary IC byte store is generated for that byte
using the value in the current memory. The memory
location's flag is then cleared so that it will not generate any
more IC stores. In addition, any stores that occur inside the
interval clear their associated memory flags since they will
still execute in the new binary. After the interval's analysis is
complete, the simulator attempts to compact any adjacent byte
stores in this list into larger multi-byte stores to compress the
size, and reduce the execution time, of the final ITCY code.

In addition to the modifications of how IC store
instructions are generated, the ITCY technique changes the
methods that manipulate the data used for the intrinsic
checkpointing of memory. In [17], memory was
checkpointed using values that were stored in the .data section
of the new binary. These values were stored into their
respective addresses using static load/store instructions that
generated their own addresses. Unfortunately, as the size of
the interval grew, the number of these static instructions grew
too large. ITCY code, however, converts the static
instructions into a loop that iterates over all the values in the
.data section. This requires the storage of the data values
needed to checkpoint memory and also the addresses where
the data will be stored. This requires extra space in the .data
section of the new binary, but it is offset by the new .text
section not requiring large numbers of static instructions.

3.2.2 Ensuring Valid Memory Accesses

In order to allow the potential combination of multiple
simulation intervals into a single, new benchmark, the

230

New
text section
Original
Heap

Heap

Original
.data section

.data section

Original
text section

IC Painters

text section

Stack

Original
Stack

New
.data section

Original
Binary Layout

New Binary
Layout

Figure 4: Original and New Binary Memory Layouts

location of the new ITCY .text section can no longer be
located in the same memory space as the original benchmark.
Previous intrinsic checkpointing work in [17] did not suffer
from this requirement since all modifications were done to the
original binary which retained its initial location in memory.
However, this prevented the creation of a new benchmark that
contained code from different intervals in the same
benchmark or from different benchmarks altogether. To
allow for this flexibility, the ITCY technique reorders the
sections of the new binary such that new segments of code
can easily be added without affecting the values in the
original benchmark's memory space. Figure 4 depicts these
memory layouts.

3.2.3 Preserving the Dynamic Instruction Stream

Since ITCY code contains the static, and not dynamic,
instructions of the original interval, special care must be taken
to ensure that the execution of the ITCY code follows the
same execution order that was seen in the original interval's
execution. This is especially the case when branches are
executed within the interval's code. Since the ITCY code will
no longer occupy the same PC addresses within the memory's
address space, branches need to be handled by either
replacing the original branch target with the PC address of the
new target or by using special control code. For conditional
branches, the original branch target can simply be replaced
with the new target in the assembly code. Calculating these
targets is done by giving every target instruction in the ITCY
code a unique label that contains the original PC value as part
of the label. The compiler then automatically re-targets each
branch when it is run. If a branch saved its return address to a
register prior to its execution, then this register must be
explicitly loaded with the original return address prior to the
execution of the new branch in order to maintain proper
execution semantics.

Indirect branches, however, are more difficult. Since the
execution of the original interval's instructions inside the
ITCY code will generate the exact same register values that
were seen in the original benchmark, using a register with its
original value to supply an indirect branch with its target will

231

cause the program to transfer control into the old address
space. This violates the proper execution order of the new
benchmark. Therefore, indirect branches must be handled
using special blocks of control code.

The method for handling these problematic indirect
branches first finds all the PC addresses of the new indirect
branch targets using their target PC labels. These PC values
are then written into locations in the original address space
during the pre-interval section of the ITCY code. Each new
target PC address must be written to the address that
corresponds to where the old target instruction resided in the
original address space. Prior to the execution of the indirect
branch in the ITCY code, a special block of control code uses
the value in the register that contains the original target
address as a memory location to read in the new branch target
address into a temporary register. This temporary register is
then used by the indirect branch in the ITCY code for the new
target PC value. The ITCY code generation phase
guarantees that these temporary registers do not interfere
with the correct execution of the program by either finding
a register that will be overwritten in the future prior to
being read or by setting up a block of control code to save
the register to a special location in memory before it is
used and then restoring it afterwards.

3.2.4 Preserving Cache Access Patterns

Not only must the ITCY code perform functionally correct,
but it must also maintain a certain level of accuracy with
respect to the underlying microarchitecture. Cache
performance typifies this requirement since the cache
performance of the ITCY code can be drastically different
than the original benchmark depending on how the ITCY
code is created. Since only those static instructions that are
executed in the original interval are output into the ITCY
code, any code that was not executed is omitted from the new
binary. If this omitted code separated basic blocks that were
spaced far apart in the original memory space, the exclusion
of this code would cause the basic blocks to appear next to
each other in the memory space of the new binary thus
creating a totally new memory footprint. To help the ITCY
code maintain as much representative cache behavior as
possible, "pads" of no-op instructions are incorporated in
between basic blocks that have had their original separating
code removed.

3.2.5 Exit Handling

When the ITCY code finishes its execution of a simulation
interval, it needs to be able to exit the interval code since it
does not contain any code from the original binary beyond
what was seen in the interval. To handle this situation, two
different methods can be used. The first method logs the value
of the PC that corresponds to the last instruction of the
interval along with the number of times that it is executed. In
addition, to handle the transfer of control to any additional
intervals when creating a SuiteSpot, the starting address of the
next interval is also kept. Once these values are known,

special annotative instructions are added to the IC code so the
simulator can load them into its internal state for later use.
During the execution of the ITCY code, every time the
simulator encounters the exit PC, it increments the current
execution count until it matches the initial count. At this
point, if the next interval address is equal to zero, the
execution terminates. If the next address is not equal to zero,
then the simulator moves to the start of the next interval.

If it is not possible to add this tracking functionality to the
simulator, a second method can be used whereby a
termination routine is inserted into the binary itself. Since the
ITCY code will be executing static instructions from the
original interval, if a termination routine is to be added, it will
need to insert one or more instructions into the set of static
instructions at the exact location that the last instruction in the
interval was executed. If this last instruction is only executed
once, it can simply be replaced with an exit system call or a
branch to the next interval. If, however, the static instruction
that corresponds to the last dynamic instruction is executed
more than once, then it must be replaced with a block of
special control code that internally tracks the number of times
that it is executed so that it can finish at the appropriate time.
By using this second method, the ITCY code can be run
directly on an unmodified simulator, or possibly on real
hardware, and it will exiting properly.

3.2.6 System Call Emulation

The final step of the code generation process involves the
removal of system calls from the final ITCY code. Using
methods similar to intrinsic checkpointing, a syscall can be
replaced with a branch to a special section of code that
emulates the effects of the original system call. The actual
checkpointing data that the emulation code must load into the
system is determined by the system call handling routines
built into SimpleScalar. These routines mimic the execution
of system calls using the native system call handlers of the
host machine. Once the emulation code completes, control is
transferred back to the interval via an unconditional branch.

One side effect of this emulation is that the code will only
recreate the effects of the syscall when it was executed during
the ITCY code generation. This prevents syscalls that do not
have repeatable behavior, such as gettimeofday(), from
executing properly when the ITCY code is later used.
However, a benchmark with these syscalls is less desirable
since its results would not be predictable. Instead, by
embedding this temporal information into the ITCY
benchmark, this variability is removed. In addition, the
emulation of system calls removes the need for input files
because any file reads that occurred in a system call have
been effectively checkpointed inside the new binary's
system call emulation code.

3.3 ITCY Code Compilation

The final phase of converting a benchmark compiles the
ITCY code into either a set of SuiteSpecks or a single

232

SuiteSpot. As was mentioned previously, a SuiteSpot
combines multiple simulation intervals into one single binary.
Each interval is linked to the next interval by using branch
instructions in the place of an exit syscall. The compilation of
ITCY code into SuiteSpecks or a single SuiteSpot proceeds in
a very straightforward fashion since the code generation phase
in section 3.2 automatically generates a Makefile that can be
used to compile the code. This Makefile must be created in
order to tell the compiler where to place the .data and .text
sections of the new ITCY code as was described in section
3.2.2.

3.4 ITCY Code Execution

After the ITCY code is compiled, it can be executed just
like any other benchmark. Input datasets are no longer
needed since all system calls are now emulated by the
benchmark and any file input data that the original benchmark
needed is checkpointed within the state of the ITCY code.
One concern that needs to be addressed, however, is the
handling of interval weights. Since each interval may not
represent an equal amount of the original benchmark's
execution profile, the performance metrics for an interval may
need to be offset to reflect this discrepancy. If SuiteSpecks
are used, their performance metrics simply need to be
multiplied by their respective weights before they are
summed together. However, if a SuiteSpot is used to
represent many different intervals each with a different
weight, then signal instructions must be added to the ITCY
code to alert the simulator when a new interval begins so that
it can handle the statistics.

3.5 Validation

To verify that the ITCY code was executing the proper
instructions from the original SimPoint interval, a trace of the
register file was maintained on a cycle level basis and
compared to a similar trace that was created during the ITCY
code generation. If the traces matched, it was assumed that
the code was executing the proper instructions. Due to large
overhead, this was only done for relatively small intervals. A
more rapid, but less accurate, technique loaded a special exit
code into the input argument register of the exit syscall just
prior to its execution at the end of the benchmark. When the
exit syscall was reached, this exit code was output to the
screen and checked by inspection.

4. EXPERIMENTAL FRAMEWORK

The ITCY technique was tested using the Alpha [6]
architecture and the configuration in Table 1 with out-of-order
execution. The sim-safe functional simulator from the
SimpleScalar version 3.0d [1] simulation infrastructure was
modified to do the interval analysis and code generation.
Other simple modifications were made to the simulators to
handle the parsing of any special ITCY control instructions
that were previously discussed.

Simulator Parameter Parameter Value

I ‘ Speclnt Avg ‘ SpecFP Avg } Spec2K Avg ‘

Instruction Fetch Queue Size | 32 instructions Mem/Reg Checkpointing 574,751 4.524.063 2.019.621
Issue/Decode/Commit Width | 8 instructions Indbr/Syscall /Exit Handling 1,418 168 960
Branch Predictor Combined, 8192 entry meta-table Total Pre-Interval Dynamic Insts 576,169 4,524,231 2,020,582

Bimodal Part: 8192 entries | Total Pre-Interval Static Insts 271 459 340

2-Level Part: 8192 11/12 table entries, 13-bit history

Branch Target Buffer 512 sets, 4-way associativity

L1 I-Cache 128 sets, 32-byte blocks, 2-way associativity, LRU
L1 D-Cache 128 sets, 32-byte blocks, 4-way associativity, LRU
L2 Unified Cache 1096 sets, 64-byte blocks, 4-way associativity, LRU
I-TLB 32 sets. 4096-byte blocks, 8-way associativity, LRU
D-TLB 32 sets, 4096-byte blocks, 8-way associativity, LRU

Table 1: Baseline Configuration

The compilation of the generated ITCY code was
straightforward since the majority of the work was already
done in the code generation phase. Each Makefile simply
needed to be run to produce the new binary or binaries. The
actual compilation occurred on a native Alpha compiler since
no cross-compiler was easily obtainable that would output
binaries for SimpleScalar. All 26 benchmarks from the SPEC
CPU2000 benchmarking suite with reference inputs were
used including a variety of different input data sets. This
resulted in a total of 41 different benchmark/dataset pairs.
SimPoint was used to provide the sample intervals and the
majority of the results used thirty, 10 million instruction
intervals per benchmark. These intervals were then converted
into a set of SuiteSpecks for each benchmark. SuiteSpots
were not used due to size constraints and also due to the fact
that they are functionally equivalent to their SuiteSpeck
counterparts when they are executed serially. Next,
individual benchmark results were calculated as the weighted
average over the SimPoint intervals. Each SuiteSpeck fast-
forwarded through the intrinsic checkpointing code prior to
the start of the interval.

5. RESULTS AND ANALYSIS

This section presents the results when testing the ITCY
checkpointing methodology. The results can be broken down
into a set of four broad categories. These categories are as
follows: code overhead, performance modeling, effects on
file size, and simulation speedup.

5.1 Code Overhead

The code overhead for the ITCY method can be quite large
due to the nature of the technique. Since each simulation
interval is removed from the original benchmark and
converted into ITCY code, it will need special instructions
inserted into the interval to handle indirect branching and exit
handling. In addition, system call emulation code will need to
be inserted. The instructions that are inserted into the new
binary consist of those that occur prior to the start of the
interval, referred to as pre-interval instructions, and those that
occur within the interval, referred to as intra-interval
instructions. All of this new code will add to both the
overhead and size of the new benchmark, however, it allows
for a greater deal of flexibility and portability for the new
binary insomuch that it can be moved between different

233

Table 2: Breakdown of ITCY Pre-Interval

microarchitectural configurations of the same base

architecture (i.e. the Alpha ISA).
5.1.1 Required Pre-Interval Instructions

For the instructions that occur prior to the interval, they
primarily consist of those needed to checkpoint the memory
and the register file. The remainder of the pre-interval
instructions set up the .data section for indirect branch and
syscall handling as described in sections 3.2.3 and 3.2.5, set
up the exit handling described in section 3.2.6, and handle any
other miscellaneous tasks described in section 3.

Table 2 shows the dynamic instruction counts for the
integer (Int), floating point (FP), and all SPEC2000

benchmarks separated out into memory/register
checkpointing and the remainder of the pre-interval
instructions. It also shows the total number of static

instructions in the pre-interval code. From the results, it is
clear that more than 99% of the pre-interval dynamic
instructions are devoted to memory/register checkpointing
and that those instructions come from a very small number of
static instructions. This indicates that a great deal of looping
is occurring inside the code as was described in section 3.2.1.
The table also shows that there is nearly an order of
magnitude difference in the number of dynamic
memory/register checkpointing instructions needed for the
floating point benchmarks since they traditionally use more
memory and will require more checkpointing. Overall, this
translates into an increase in the number of dynamic
instructions of 40% on average for the floating point
benchmarks and only 5% for the integer benchmarks.

Another interesting result observed in Table 2 is the higher
number of "other" instructions that are required for the integer
benchmarks compared to the floating point benchmarks.
Since the memory checkpointing instructions occur in a loop,
they only contribute a constant number of static instructions to
the pre-interval code. However, the instructions that handle
indirect branch targets and syscall emulation are entirely static
and increase in amount whenever the number of indirect
branches or syscalls increase. As Table 3 shows, the number
of syscalls that need emulation will have little effect in this
case, however, the integer benchmarks have over 4 times as
many indirect branches as the floating point benchmarks.

Speclnt Avg | SpecFP Avg | Spec2K Avg }

Syscalls 1.1 10.7 4.6
Indirect Branches 124,101 29,417 89,460
Unconditional Branches 286,475 73,551 208.576

Table 3: Number of Syscalls and Indirect Branches
in ITCY Interval

510%

Onn_ noll._nlla ﬂnﬂl]l]l]’:

nll

ORI v& SN
%N@g%% &5 %9&
T

Benchmark

Relative P

@ eO Qg @6{“&3{3@@

é\

Figure 5: Relative Percent Error compared to
SimPoints When Predicting CPI - Integer Benchmarks

5.1.2 Required Intra-Interval Instructions

The instructions that occur in the pre-interval code can be
fast-forwarded through at the start of the simulation and
ignored. However, the instructions that occur within the
interval must be executed during the detailed simulation.
These intra-interval instructions can negatively affect the
results of the simulation if they are too numerous and must be
carefully handled to minimize this risk.

Indirect and unconditional branch handling contributes the
largest amount of intra-interval code overhead since these
branches occur quite frequently in the interval as was seen in
Table 3. However, the table only gave information about the
number of branches that were in the interval and not the
effects of the code that handles their proper execution. On
average, indirect branch handling increases the length of an
integer benchmark interval by 3% and a floating point
benchmark interval by 0.6%. Unconditional branch handling
increases the length of an integer benchmark interval by 2.8%
and a floating point benchmark interval by 0.7%. The smaller
increase for floating point benchmarks is likely due to the fact
that they traditionally spend a great deal of time inside of
looping code where conditional branches, not indirect
branches, control the flow of the program.

System call handling, unlike indirect branch handling,
contributes very little to the intra-interval code overhead.
Since Table 3 showed an average of only 4.6 syscalls per
benchmark interval, it is expected that there will be little
handling code needed. This is indeed the case. However,
several benchmarks do exhibit a great deal more syscall
handling code than the average. This is likely due to an
interval containing a large amount of file input which would
result in a substantial amount of checkpointing code being
introduced to emulate the input. This is particularly the case
for mcf, twolf, art 110, and fma3d. On average, syscall
emulation only increases the length of an integer benchmark
interval by 0.001% and a floating point benchmark interval by
0.03% due to the very small number of syscalls seen in each
interval.

q%i%* R &%‘2@\ \g“%w@ S
&

234

5 30%

5 25% .

g 20%

5 15%

S 10%

2 ow 1., —m- - Hlae_HAO
S& Qi @3(‘? %f&x@ T &"i ® s ii;% W

Benchmark

Figure 6: Relative Percent Error compared to
SimPoints When Predicting CPI - Floating Point

5.2 Performance Modeling

Performance modeling using ITCY code can suffer from
the effects of the intra-interval code insertion. In addition, the
relocation of the original interval into a new location in
memory and the use of only those static instructions that are
executed from the original benchmark can also have an effect
as was discussed in sections 3.2.2 and 3.2.4. The effects of
ITCY code on I-cache performance are expected to be the
most severe due to the usage of only those static instructions
seen within the interval for the new ITCY binary.
Fortunately, the previously discussed technique of inserting
instruction pads into the interval to simulate the spatial
separation of basic blocks addresses this problem to a certain
extent. However, since the number of misses with respect to
the overall number of I-cache accesses can be very small in
some cases, extra misses can greatly affect the relative error
rate of the overall I-cache miss rate.

D-cache effects are expected to be much smaller than those
seen with the [-cache. Since the same memory locations will
be accessed at roughly the same points in time as the original
interval, the D-cache performance will only be affected by
those intra-interval instructions that access memory. The
majority of these instructions do not do so except for the
instructions that are inserted to handle indirect branch targets.
Since these accesses are to locations in memory that were
never used in the initial binary except to store the program
code, they will affect the D-cache performance.

Unlike the effects on cache performance, branch prediction
performance for ITCY benchmarks should remain nearly
unchanged. This is due to the fact that all branches are
guaranteed to follow their prescribed paths from the original
interval since the register values used for conditional
branching are the same. In addition, the proper performance
of various branch prediction structures such as the Return
Address Stack is ensured by outputting all the original branch
assembly opcodes and not replacing them with different
opcodes. Overall, there was a change of less than a 1% for all
benchmarks and 0.2% on average with respect to branch
predictor performance.

The main test of the ITCY method's ability to model the
original benchmark's performance is done by quantifying its

1,000

o, 100 - =
=]
3
o 10 - A HHHH
o
> il
1 T T T T T T T T T i T T T T T T T e
e R N s O e N O
FFE VS T RFL TRV ST LI IVTERG N FETT TS € Sy, THS
S T T SV LT PRSIV F IS E LTV TS TR 59
N & o, 28 &7 Y3 G0 878 °ETTL Y LY
AO.Q,/AQ & q,? R (\>Q/&9 /(.\)&/éyQ < S < @l- %oc'/
\04)\ < Q{'\}Q 3 Gy ©°Q & 060 &
Benchmark <
Figure 7: Speedup of ITCY Code Executed Serially
10,000
1,000 - =
)
g 100 - HHHHH
: 1IN
a 10 . : : : |]
. > 8 - -
,\q,a& ng ‘;@ égQ @{5’ e?q’\éé‘ &b@%@@o Q\Q ‘bQ%\ ,3,'\0 g 5} o& @é éc?‘ 00‘7? S\@.S&?&O@ $$ 055‘ ,.\,QQ éce’.g?:? 081,?,& @@bo& &*Q i@ég‘\g\‘ob\\b @Q\G%é@ &é} dé‘b& @Q?
ST FIICL T EFG TR 5 D E SIS SR 8
° A°{\ ’\5'\’/ %AQL& &»‘Q/ e&/&/ Aé %{@:\"330/@00 S‘QZQ/(:&S Te cé’qg o§ v
J QIS
ST & € FEIS $
Benchmark]

Figure 8: Speedup of ITCY Code Executed in Parallel

effects on CPI when compared to using SimPoints alone.
Since CPI incorporates many different microarchitectural
elements, its prediction accuracy serves as a good indicator of
whether ITCY is a useful tool for predicting the performance
of a system overall. Figures 5 and 6 show that the average
CPI for all benchmarks is within 5% relative error compared
to only using SimPoints. Several benchmarks (e.g. parser,
perlbmk, vortex, and mesa) are more sensitive than others to
fluctuations in performance due primarily to the effects of
intra-interval branch handling, therefore, their performance
predictions are less accurate. The integer benchmarks also
show a slightly increased average relative error and this is
likely attributable to their increased number of indirect
branches. A final comparison between ITCY code and a full
detailed simulation showed that the integer benchmarks were
within 7.5% average relative error and the floating point
benchmarks within 6%. Overall, based on the ITCY
technique's ability to accurately predict performance, it is
quite useful for predicting the performance of a design.

5.3 Effects on File Size

The increase in the file size when a benchmark interval has
been converted into ITCY code can vary greatly based upon
the size of the interval chosen, the amount of intrinsic
checkpointing code needed, and the amount of code that must
be inserted into the interval. Individual SuiteSpecks have an
average file size for the integer and floating point benchmarks
of 1.48 MB and 10.04 MB, respectively. When SuiteSpecks
are summed together for each benchmark to simulate the size
of a SuiteSpot, the average file size for the integer and

235

floating point benchmarks is 44.3 MB and 279 MB,
respectively. Combining all the benchmarks resulted in a
total of 1.15 GB for the integer benchmarks and 4.18GB for
the floating point benchmarks.

5.4 Simulation Speedup

To measure the speedup of the ITCY code compared to the
original benchmark, both the original benchmark and the
ITCY binary were fast-forwarded to the start of the simulation
interval and then allowed to finish the detailed execution of
the interval. The ITCY binary's runtime was then compared
to the original benchmark's runtime. Since each benchmark
of the ITCY code is broken into 30 SuiteSpecks, the results
are presented not only for the situation when the intervals
would be executed serially in Figure 7, but also if they were
executed in parallel in Figure 8. The serial case provides a
rough estimate for how long a SuiteSpot would take to
complete since it would essentially be executing the same
amount of code as the 30 SuiteSpecks. From the results, it
can be seen that there is an incredible amount of speedup
achievable when using ITCY code. With a serial speedup of
60x, this translates from hours to minutes. The greatest
speedup, however, can be seen in the parallel speedup with an
average of nearly 1000x speedup and a maximum speedup of
over 5500x for sixtrack. It should be noted that the parallel
speedup is not simply 30 times faster than the serial speedup
since some intervals take much longer to run than others due
to their late locations in the dynamic instruction stream.
However, an average parallel speedup of 1000x clearly shows
the potential of using ITCY code to rapidly and efficiently

. ExecutionTime | CPI Prediction . Microarchitecture Storage .
Technique Representativeness i Flexibility
per Benchmark Accuracy Dependent Requirements
B-mark Suite o o ! : .
. Variable Variable Low No N/A High
Reduction [11]
Statistical .
~ 1000x speedup 2.30% Low Yes Negligible Low
(Trace) [9]
Statistical e .
~ 1000x speedup 2.40% Low Yes Negligible High
(Testcase) [5]
SMARTS [23] 5 hours 0.64% High No N/A Medium
SimPoint [19] 2.8 hours 3.70% High No N/A Medium
SimPoint 14 mins (serial . 4 GB for 20
tmrort . () 1.20% High Yes) _‘J Low
Startup [20] 1 min (parallel) SPEC2K b-marks
LivePoints [22 . 12 GB compressed for
vePoints [22] 91 secs 1.60% High Yes]‘ . P Low
all SPEC2K b-marks
ICBM [17 365 MB for 19
(7] 3 mins 2.12% High No . or Medium
SPEC2K b-marks
ITCY 16 mins (serial) X . 5.3 GB forall .
7% High No o High
32 secs (parallel) SPEC2K b-marks

Table 4: Comparing ITCY to Several Popular Simulation Time Reduction Techniques

simulate the entire SPEC2000 benchmarking suite. One final
important note to remember is that the speedup numbers
presented here are with respect to fast-forwarding to the start
of the simulation interval. If the execution times of the ITCY
code were compared to a full detailed simulation of each
benchmark, the speedup would be orders of magnitude
greater.

5.5 Comparison with Other Techniques

The results presented in this section have shown the great
potential of the ITCY technique for dramatically reducing the
simulation time of future designs while still maintaining a
high degree of accuracy. However, there are several trade-
offs and differences between the techniques and other
simulation time reduction methods. Table 4 compares ITCY
to several of the more popular techniques by contrasting their
reported speedup, accuracy with respect to full detailed
simulation, representativeness, microarchitecture dependence,
storage space requirements, and flexibility with respect to the
subsequent simulation environment.. It should be noted that
the CPI prediction accuracy is with respect to full detailed
simulation and not the SimPoint intervals used to generate the
ITCY binaries. Since these binaries use a simulation interval
selection technique that produces its own share of relative
error, their performance prediction accuracy is partly due to
the selection technique used.

6. CONCLUSION AND FUTURE WORK

This paper presents a technique that dramatically reduces
the simulation time of a benchmarking program by allowing
the rapid execution of only representative portions of code
and creates highly portable benchmarks that can be easily
moved between many different simulation environments.
This technique creates an entirely new assembly program
comprised of the static instructions from one, or many,
locations from within the original benchmark. System calls
are also removed from the original program and their effects

236

are converted into emulation code that is inserted into the
assembly of the new benchmark. A method is also proposed
that allows for the combining of multiple ITCY code
segments into a single benchmark. The end result of the
technique is the creation of a set of programs that facilitate the
fast, efficient, and representative benchmarking of future
designs without the need for a complex simulation
environment.

There are several different directions that the techniques in
this paper can explore. For example, embedded applications
often suffer from a limited amount of memory and running
useful benchmarks can often be a problem. The techniques in
this paper could be applied to large benchmarking workloads
to create applications that would be easier to use with an
embedded device and would allow the rapid simulation of
complex benchmarks in a fraction of the time. The lack of a
need for system call handling could also be used to an
advantage if the embedded device did not have such
functionality. In addition, ITCY code has the ability to
combine multiple intervals of code from different
benchmarking applications into a new, single benchmark.
The basic ITCY technique proposed using intervals from
within the same benchmark to create SuiteSpots, however, it
is entirely possible to use intervals from different benchmarks
altogether. This method, if used properly, could potentially
create individual benchmarks meant to represent the
execution of many different applications at once. Finally, the
ITCY technique could be leveraged to pull out specific pieces
of assembly code from a given benchmark and create new
benchmarks that are meant to stress particular parts of an
underlying architecture. For example, intervals of code that
stress a certain part of the pipeline could be isolated and re-
compiled into a benchmark that would focus only on that part
of the microarchitecture. Alternatively, benchmarks could be
created that execute a specific region of code that uses a
greater than normal amount of power and then the design
could focus on reducing the power usage of the processor
with the benchmark representing a worst case scenario.

REFERENCES

[1] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An
infrastructure for computer system modeling. IEEE
Computer, pages 59—67, February 2002.

[2] RH. Bell, Jr. Automatic workload synthesis for early
design studies and performance model validation. PhD thesis,
The University of Texas at Austin, December 2005.

[3] R.H. Bell, Jr. and LK. John. Basic block simulation
granularity, basic block maps, and benchmark synthesis using
statistical simulation. Technical Report TR-031119-01, The
University of Texas at Austin, November 2005.

[4] R.H. Bell, Jr. and L.K. John. The case for automatic
synthesis of miniature benchmarks. In Proceedings of the
Workshop on Modeling, Benchmarking, and Simulation,
pages 8897, Madison, WI, June 2005.

[5]1 R.H. Bell, Jr. and L.K. John. Improved automatic testcase
synthesis for performance model validation. In Proceedings
International

of the 19th Annual Conference on
Supercomputing, pages 111-120, 2005.
[6] Compaq Computer Corporation. Alpha 21264

microprocessor hardware reference manual, July 1999.

[7] L. Eeckhout, R.H. Bell, Jr., B. Stougie, K. De Bosschere,
and L.K. John. Control flow modeling in statistical simulation
for accurate and efficient processor design studies. In
Proceedings of the International Symposium on Computer
Architecture, pages 350-361, Munich, Germany, June 2004.
[8] L. Eeckhout, K. De Bosschere, and H. Neefs. Performance
analysis through synthetic trace generation. In Proceedings of
the International Symposium on Performance Analysis of
Systems and Software, April 2000.

[9] D. Genbrugge, L. Eeckhout, and K. De Bosschere.
Accurate memory data flow modeling in statistical simulation.
In Proceedings of the 20th Annual International Conference
on Supercomputing, Cairns, Queensland, June 2006.

[10] J.L. Henning. SPEC CPU2000: Measuring CPU
performance in the new millennium. /EEE Computer, 33:28—
35, July 2000.

[11] AJ. KleinOsowski and D.J. Lilja. MinneSPEC: A new
SPEC benchmark workload for simulation-based computer
architecture research. Computer Architecture Letters, pages
10-13, June 2002.

[12] C.K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.
Lowney, S. Wallace, V.J. Reddi, and K. Hazelwood. Pin:
Building customized program analysis tools with dynamic
instrumentation. In Proceedings of the Conference on
Programming Language Design and Implementation, pages
190-200, Chicago, IL, June 2005.

[13] S. Narayanasamy, C. Pereira, H. Patil, R. Cohn, and B.
Calder. Automatic logging of operating system effects to
guide application-level architecture simulation. In
Proceedings of the Joint International Conference on
Measurement and Modeling of Computer Systems, pages
216-227, Saint Malo, France, June 2006.

[14] M. Oskin, F.T. Chong, and M. Farrens. HLS: Combining
statistical and symbolic simulation to guide microprocessor
design. In Proceedings of the International Symposium on

237

Computer Architecture, pages 71-82, Vancouver, British
Columbia, June 2000.

[15] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and
A. Karunanidhi. Pinpointing representative portions of large
Intel Itanium programs with dynamic instrumentation. In
Proceedings of the International Symposium on
Microarchitecture, pages 81-92, Portland, OR, December
2004.

[16] A. Phansalkar, A. Joshi, L. Eeckhout, and L.K. John.
Measuring program similarity: Experiments with SPEC CPU
benchmark suites. In Proceedings of the International
Symposium on Performance Analysis of Systems and
Software, pages 10-20, Austin, TX, March 2005.

[17] J. Ringenberg, C. Pelosi, D. Oehmke, and T. Mudge.
Intrinsic Checkpointing: A methodology for decreasing
simulation time through binary modification. In Proceedings
of the International Symposium on Performance Analysis of
Systems and Software, pages 78—88, Austin, TX,March 2005.
[18] M. Sakamoto, L. Brisson, A. Katsuno, A. Inoue, and Y.
Kimura. Reverse Tracer: A software tool for generating
realistic performance test programs. In Proceedings of the
International Symposium on High-Performance Computer
Architecture, pages 81-91, Cambridge, MA, February 2002.
[19] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior. In
Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 45-57, San Jose, CA, October
2002.

[20] M. Van Biesbrouck, B. Calder, and L. Eeckhout.
Efficient sampling startup for SimPoint. [EEE Micro,
26(4):32-42, 2006.

[21] T.F. Wenisch, R.E. Wunderlich, B. Falsafi, and J.C Hoe.
TurboSMARTS: Accurate microarchitecture simulation
sampling in minutes. Technical Report CALCM 2004-3,
Carnegie Mellon University, November 2004.

[22] T.F. Wenisch, R.E. Wunderlich, B. Falsafi, and J.C. Hoe.
Simulation sampling with live-points. In Proceedings of the
International Symposium on Performance Analysis of Systems
and Software, pages 2—12, Austin, TX, 2006.

[23] R.E. Wunderlich, T.F. Wenisch, B. Falsafi, and J.C. Hoe.
SMARTS: Accelerating microarchitecture simulation via
rigorous statistical sampling. In Proceedings of the
International Symposium on Computer Architecture, pages
84-95, San Diego, CA, June 2003.

[24] J.J. Yi, R. Sendag, L. Eeckhout, A. Joshi, D.J. Lilja, and
LK. John. Evaluating benchmark subsetting approaches. In
Proceedings of the International Symposium on Workload
Characterization, pages 93-104, San Jose, CA, October
2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

